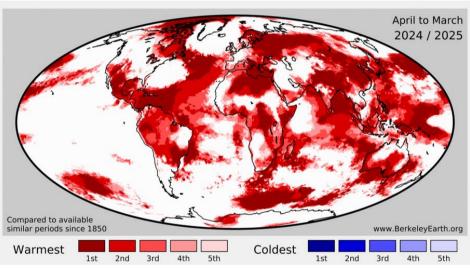
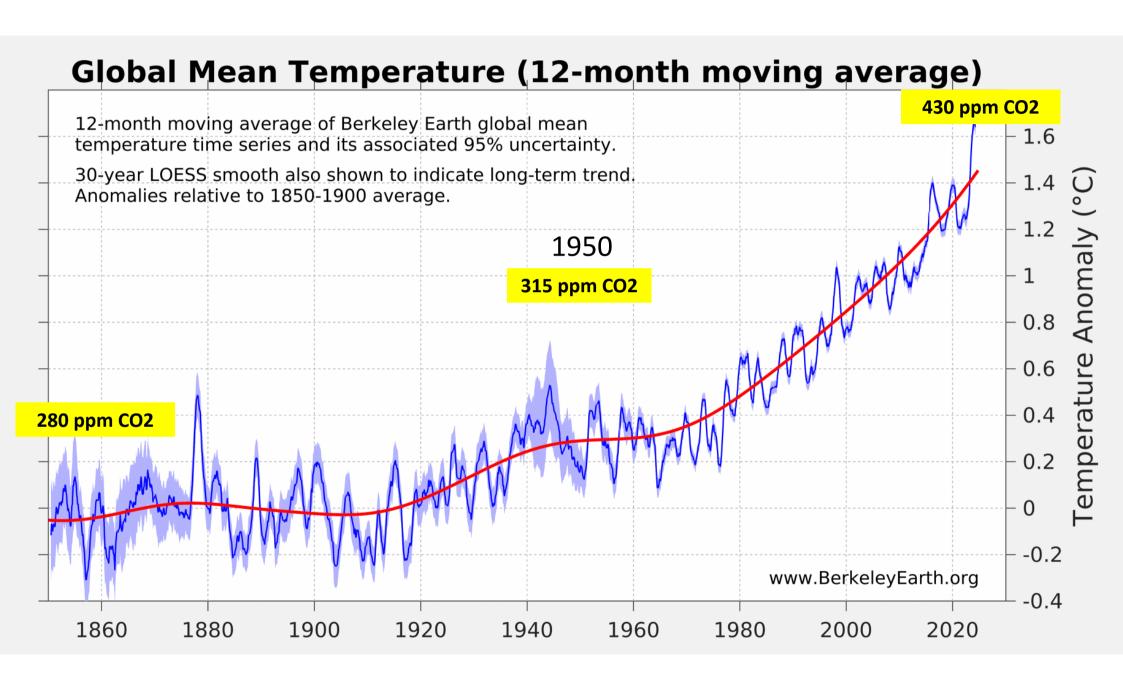
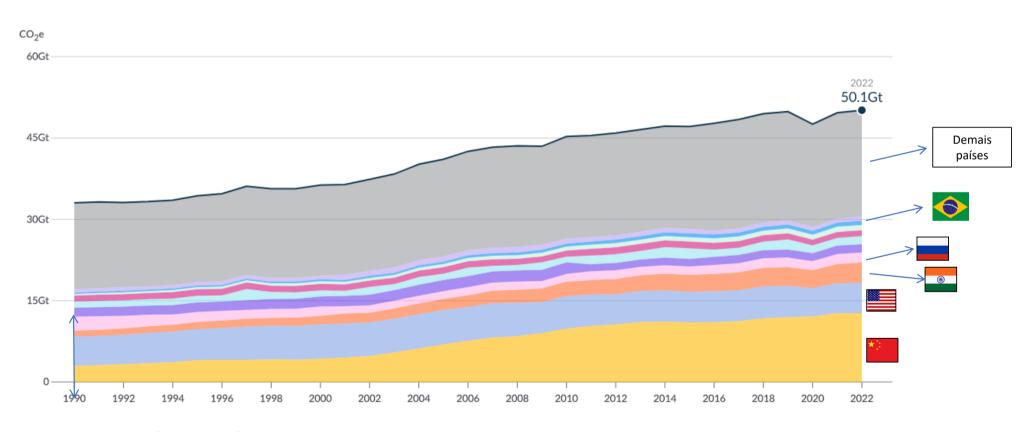

Conteúdo

- 1. Clima no Planeta Terra 2025;
- 2. Caminhos para a redução das emissões (FAO, 2023);
- 3. Por quê Metano?;
- 4. Métricas;
- 5. Ingredientes e dietas;
- 6. Lipídeos;
- 7. Aditivos;
- 8. Forrageiras e pastagens;
- 9. Intensidade de Emissão X Desempenho;
- 10. Redução do rebanho;
- 11. Opções do Futuro (próximo);
- 12. Considerações finais.

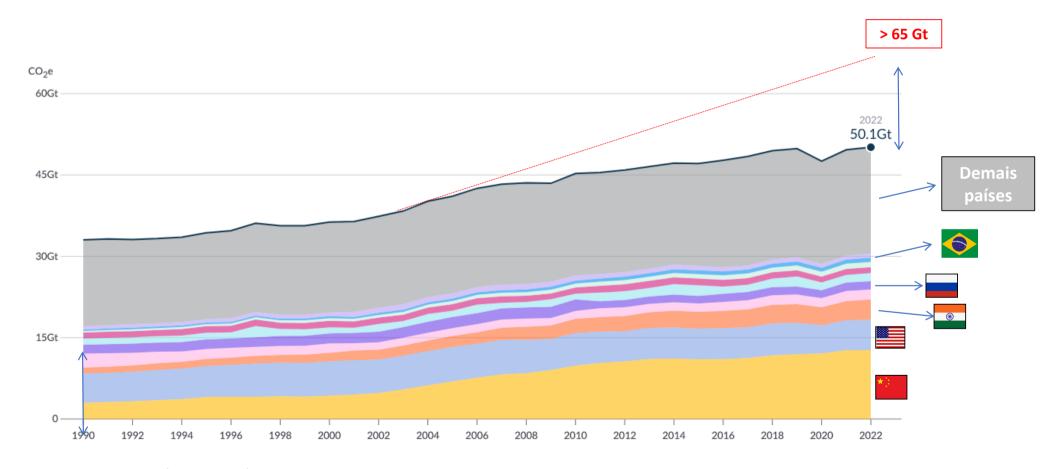


Aquecimento acelera?

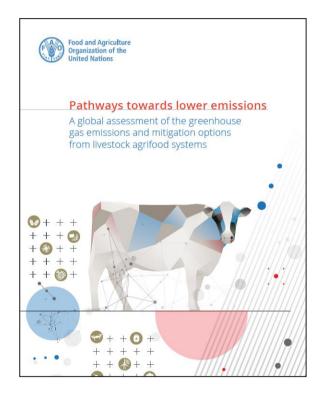

Apesar das expectativas de uma tendência de arrefecimento pós-El Niño, o primeiro trimestre de 2025 manteve temperaturas elevadas, sugerindo um padrão de aquecimento persistente


BERKELEY EARTH

- Desigual, mas distribuído globalmente

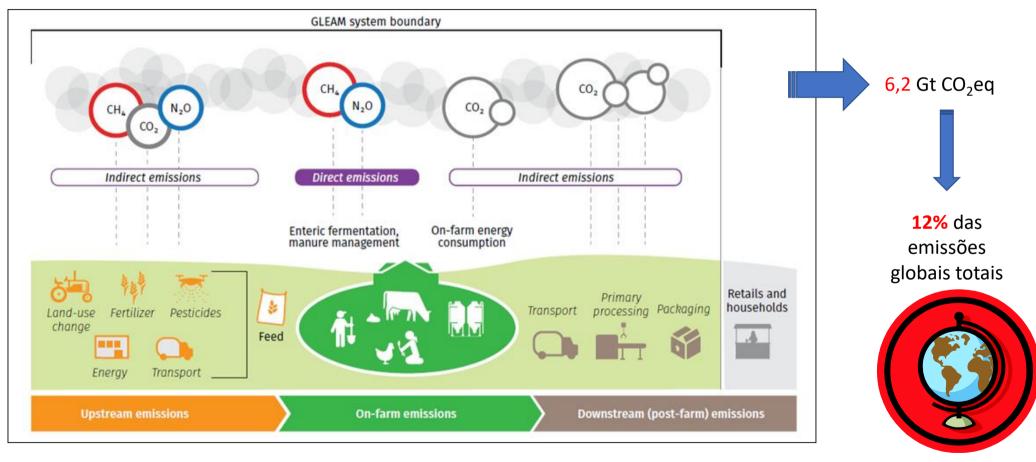

Seguimos aumentando GEE

Fonte: Climate Watch


Seguimos aumentando GEE

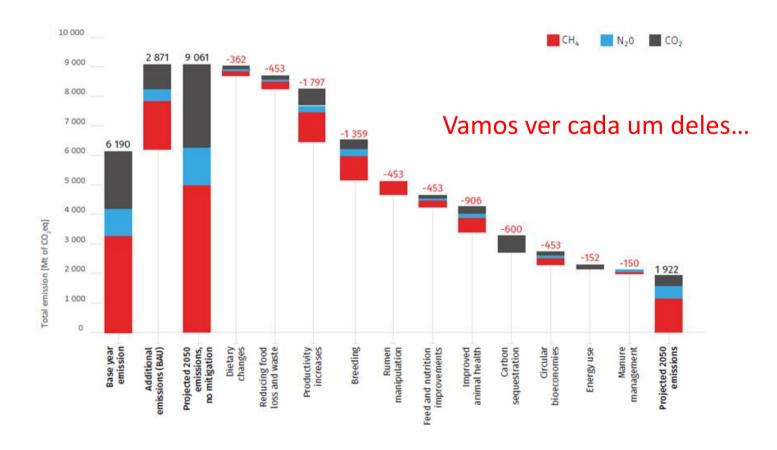
...MAS, PODERIA SER BEM PIOR!

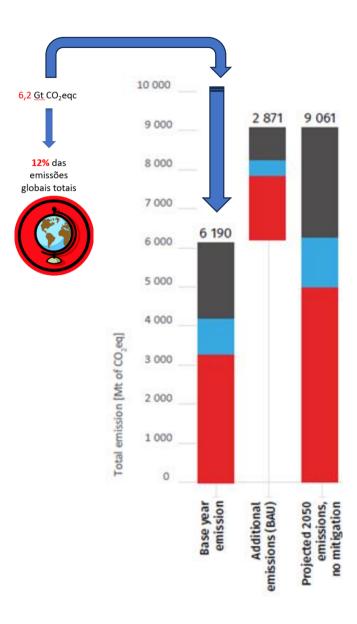
Fonte: Climate Watch


Caminhos para a redução das emissões

FAO. 2023. Pathways towards lower emissions – A global assessment of the greenhouse gas emissions and mitigation options from livestock agrifood systems. Rome https://doi.org/10.4060/cc9029en

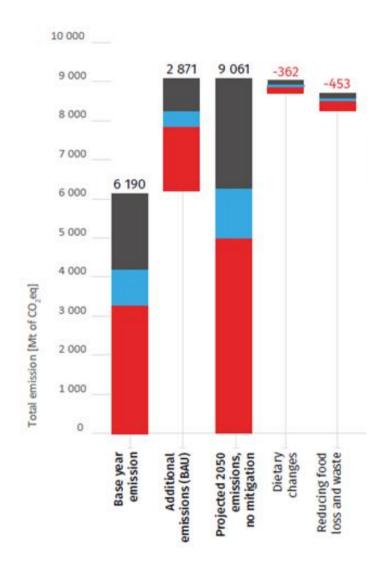
https://openknowledge.fao.org/handle/20.500.14283/cc9029en


Emissões dos animais de produção (CO2-eq)



Escopo do Sistema GLEAM (FAO)

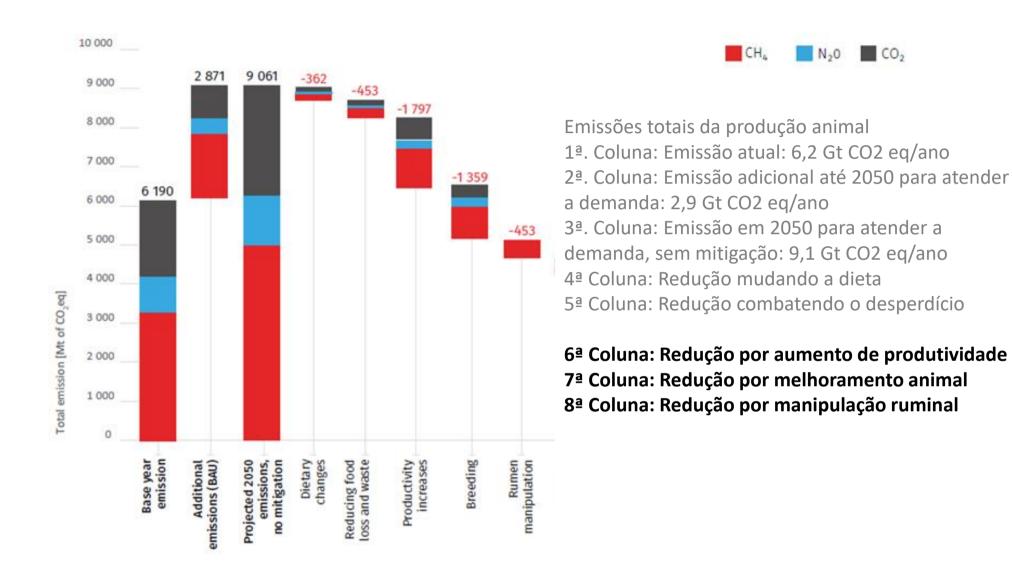
Doze caminhos para redução

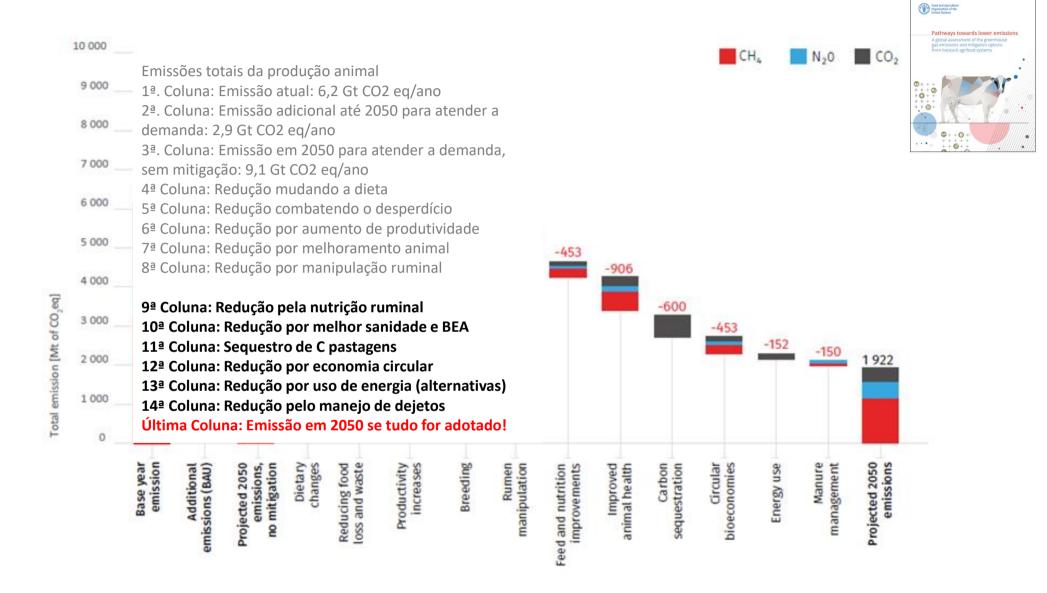


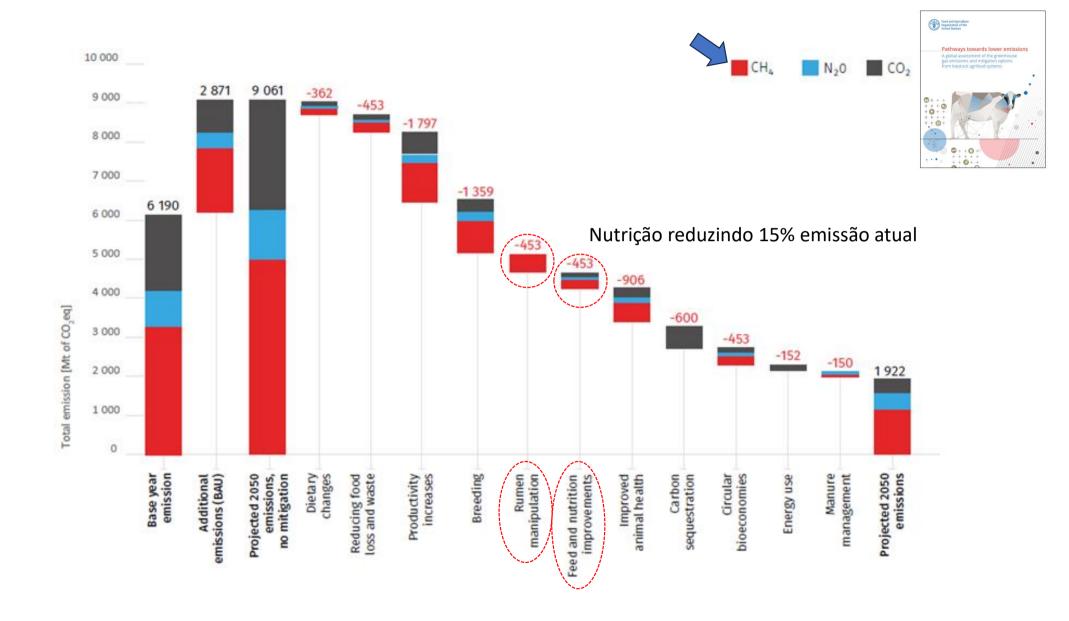
Emissões totais da produção animal 1ª. Coluna: Emissão atual: 6,2 Gt CO2 eq/ano

2ª. Coluna: Emissão adicional até 2050 para atender a demanda: 2,9 Gt CO2 eq/ano

3ª. Coluna: Emissão em 2050 para atender a demanda, sem mitigação: 9,1 Gt CO2 eq/ano

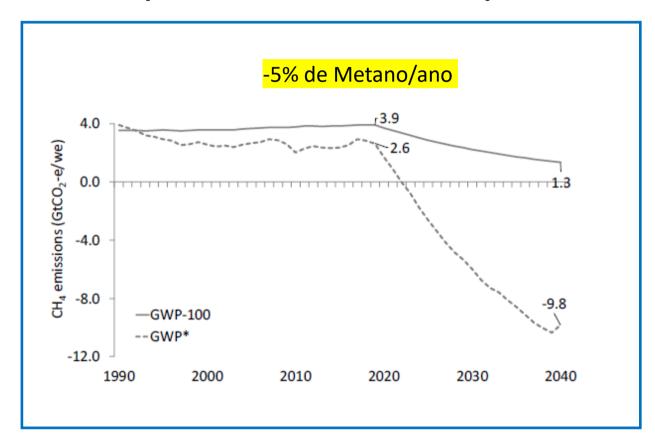




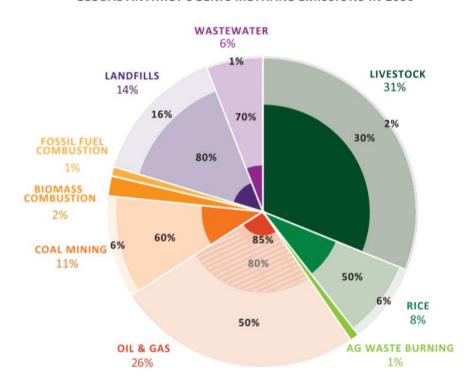

Emissões totais da produção animal

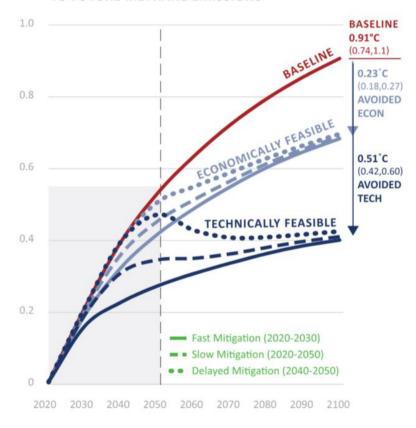
1ª. Coluna: Emissão atual: 6,2 Gt CO2 eq/ano 2ª. Coluna: Emissão adicional até 2050 para atender a demanda: 2,9 Gt CO2 eq/ano 3ª. Coluna: Emissão em 2050 para atender a demanda, sem mitigação: 9,1 Gt CO2 eq/ano

4ª Coluna: Redução mudando a nossa dieta 5ª Coluna: Redução combatendo o desperdício



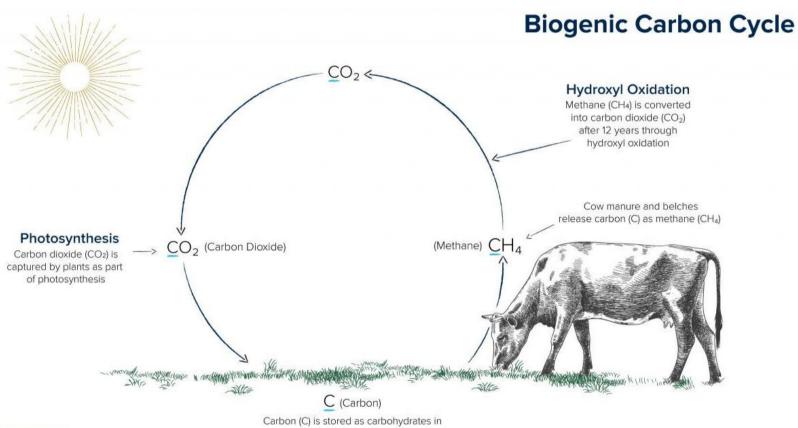
CH4: O GEE que reduz temperatura a curto prazo


- GWP₁₀₀: Todos GEE como CO2-eq
- GWP*: Leva em consideração a meia vida dos GEE
- Tempo permanência:
 - Metano: 8-12 anos
 - CO2: >1000 anos


Costa Jr et al. (2021)

O que se ganha em reduzir metano? Até -0,74 °C

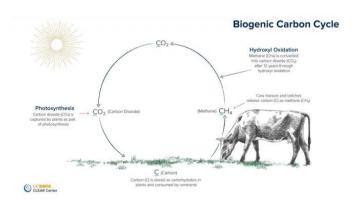
GLOBAL ANTHROPOGENIC METHANE EMISSIONS IN 2030

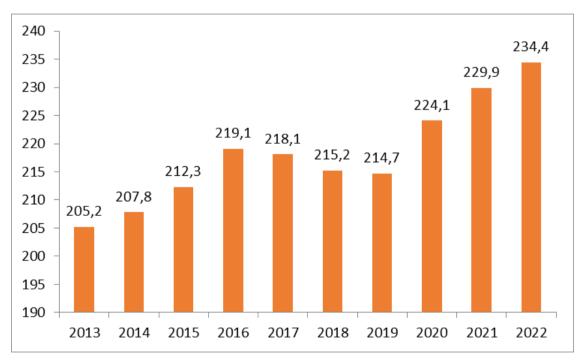


SURFACE AIR TEMPERATURE RESPONSES TO FUTURE METHANE EMISSIONS

Ocko et al, 2021 - https://doi.org/10.1088/1748-9326/abf9c8

Metano entérico e Ciclo Biogênico

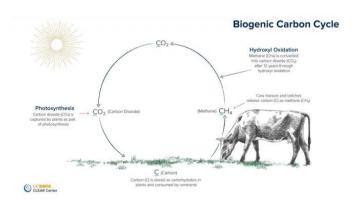



Carbon (C) is stored as carbohydrates in plants and consumed by ruminants

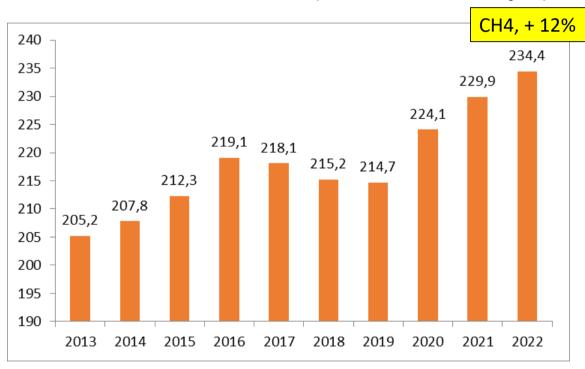
Metano entérico e Ciclo Biogênico

- O ciclo biogênico do metano mantém constante a emissão de metano, apenas se...
- ...o rebanho se mantiver constante!!!

Rebanho Bovino do Brasil (milhões de cabeças)



Fontes


IBGE: https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/21814-2017-censo-agropecuario.html Ministério da Agricultura e Pecuária: https://www.ibge.gov.br/explica/producao-agropecuaria/bovinos/br

Metano entérico e Ciclo Biogênico

- O ciclo biogênico do metano mantém constante a emissão de metano, apenas se...
- ...o rebanho se mantiver constante!!!

Rebanho Bovino do Brasil (milhões de cabeças)

Fontes

IBGE: https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/21814-2017-censo-agropecuario.html Ministério da Agricultura e Pecuária: https://www.ibge.gov.br/explica/producao-agropecuaria/bovinos/br

- Emissão diária:
 Litro/dia ou gramas/dia
- Rendimento: gramas/kg MS ingerida
- Intensidade de emissão: Expressa com base no produto animal: gramas de CH4/kg leite e gramas/kg de GMD

- Emissão diária:
 Litro/dia ou gramas/dia
- Rendimento: gramas/kg MS ingerida (ou...OMS, MS digestível)
- Intensidade de emissão: Expressa com base no produto animal: gramas de CH4/kg leite (ou corrigido para gordura, "FCM" ou energia, "ECM", etc.) e gramas/kg de GMD (ou kg de carcaça, etc.).

- Intensidade de Emissão é a métrica de escolha pois:
 - Permite focar na redução da emissão, mas mantendo atenção à produção!

- 113 g CH4/d;

- 161 g CH4/d;

- Intensidade de Emissão é a métrica de escolha pois:
 - Permite observar a redução da emissão, mantendo o foco na produção!

- 113 g CH4/d;

200 g/cab.dia;

- 161 g CH4/d;

- 540 g/cab.dia;

- Intensidade de Emissão (IE) é a métrica de escolha pois:
 - Permite observar a redução da emissão, mantendo o foco na produção!

DESAFIO: Temos que reduzir a IE em uma proporção maior do que o aumento do rebanho

- 113 g CH4/d;

200 g/cab.dia;

- 565 g/kg de ganho

- 161 g CH4/d;

- 540 g/cab.dia;

298 g/kg de ganho

Ingredientes & Nutrição

Dieta e Aditivos X CH4 Entérico (LatAm & Caribe)

2.745 registros de animais de 103 estudos (de 2011 a 2021)

	Estratégia de mitigação	Produção CH4, g/dia	Ym	CH4/kg MS	CH4, kg Leite	CH4, kg Ganho
	Pastejo OK Contínuo	Sem efeito	-13,8%	Sem efeito	ND	-21,5%
	Pastejo OK Rotacionado	Sem efeito	-14,6%	-16,5%	-16,8%	-34,8%
	Mais proteína na dieta	Sem efeito	Sem efeito	Sem efeito	-9,7%	Sem efeito
	Mais Concentrado (exp: Car. Algodão)	Sem efeito	-12,2%	-15,8%	Sem efeito	Sem efeito
A1. ~ 1	Mais Concentrado (exp: Milho)	Sem efeito	-18,5%	-17,4%	ND	-20,1%
Alterações na dieta						
	Mais Concentrado (exp: Far. e C. Soja+Milho)	Sem efeito	-16,0%	-13,7%	ND	Sem efeito
	Mais lipídeos (ex: Torta Soja)	Sem efeito	-8,1%	Sem efeito	-11,9%	ND
	Mais lipídeos (ex: Óleo Linhaça)	-47,90%	-50,9%	-46,6%	ND	-47,5%
	Mais lipídeos (ex: Óleo Palma)	-17,60%	-10,6%	-11,2%	ND	Sem efeito
	Mais lipídeos (exp: Car. Algodão)	Sem efeito	Sem efeito	Sem efeito	-17,2%	ND
	Maior nível nutricional	50,50%	-12,4%	-8,8%	Sem efeito	-37,1%
	Antibióticos (ex: Monensina)	Sem efeito	-10,1%	-10,1%	ND	Sem efeito
Manipulação	Receptores Elétrons (ex: Nitratos)	-20,00%	-14,9%	-15,3%	ND	-14,0%
ruminal	Taninos + Mimosina	Sem efeito	-29,6%	-27,4%	Sem efeito	ND
	Taninos + Saponinas	Sem efeito	-7,7%	-7,4%	ND	-12,1%

Congio et al.; Enteric CH4 mitigation strategies for ruminant in the LatAm & Caribbean: meta-analysis 2021

Dieta e Aditivos X CH4 Entérico (LatAm & Caribe)

	Estratégia de mitigação	Produção CH4, g/dia	Ym	CH4/kg MS	CH4, kg Leite	CH4, kg Ganho
	Pastejo OK Contínuo	Sem efeito	-13,8%	Sem efeito	ND	-21,5%
	Pastejo OK Rotacionado	Sem efeito	-14,6%	-16,5%	-16,8%	-34,8%
	Mais proteína na dieta	Sem efeito	Sem efeito	Sem efeito	-9,7%	Sem efeito
	Mais Concentrado (exp: Far. Algodão)	Sem efeito	-12,2%	-15,8%	Sem efeito	Sem efeito
~	Mais Concentrado (exp: Milho)	Sem efeito	-18,5%	-17,4%	ND	<mark>-20,1%</mark>
Alterações na dieta						
	Mais Concentrado (exp: Far. e C. Soja+Milho)	Sem efeito	-16,0%	-13,7%	ND	Sem efeito
	Mais lipídeos (ex: Torta Soja)	Sem efeito	-8,1%	Sem efeito	<mark>-11,9%</mark>	ND
	Mais lipídeos (ex: Óleo Linhaça)	-47,90%	-50,9%	-46,6%	ND	<mark>-47,5%</mark>
	Mais lipídeos (ex: Óleo Palma)	-17,60%	-10,6%	-11,2%	ND	Sem efeito
	Mais lipídeos (exp: Car. Algodão)	Sem efeito	Sem efeito	Sem efeito	<mark>-17,2%</mark>	ND
	Maior nível nutricional	50,50%	-12,4%	-8,8%	Sem efeito	<mark>-37,1%</mark>

Congio et al.; Enteric CH4 mitigation strategies for ruminant in the LatAm & Caribbean: meta-analysis 2021

Dieta e Aditivos X CH4 Entérico (LatAm & Caribe)

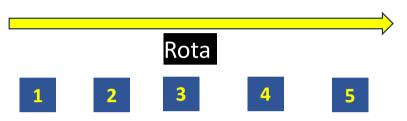
	Estratégia de mitigação	Produção CH4, g/dia	Ym	CH4/kg MS	CH4, kg Leite	CH4, kg Ganho
	Pastejo OK Contínuo	Sem efeito	-13,8%	Sem efeito	ND	-21,5%
	Pastejo OK Rotacionado	Sem efeito	-14,6%	-16,5%	-16,8%	-34,8%
	Mais proteína na dieta	Sem efeito	Sem efeito	Sem efeito	-9,7%	Sem efeito
	Mais Concentrado (exp: Far. Algodão)	Sem efeito	-12,2%	-15,8%	Sem efeito	Sem efeito
A11 ~ 1. 1	Mais Concentrado (exp: Milho)	Sem efeito	-18,5%	-17,4%	ND	<mark>-20,1%</mark>
Alterações na dieta						
	Mais Concentrado (exp: Far. e C. Soja+Milho)	Sem efeito	-16,0%	-13,7%	ND	Sem efeito
	Mais lipídeos (ex: Torta Soja)	Sem efeito	-8,1%	Sem efeito	<mark>-11,9%</mark>	ND
	Mais lipídeos (ex: Óleo Linhaça)	-47,90%	-50,9%	-46,6%	ND	<mark>-47,5%</mark>
	Mais lipídeos (ex: Óleo Palma)	-17,60%	-10,6%	-11,2%	ND	Sem efeito
	Mais lipídeos (exp: Car. Algodão)	Sem efeito	Sem efeito	Sem efeito	<mark>-17,2%</mark>	ND
	Maior nível nutricional	50,50%	-12,4%	-8,8%	Sem efeito	<mark>-37,1%</mark>
	Antibióticos (ex: Monensina)	Sem efeito	-10,1%	-10,1%	ND	Sem efeito
Manipulação	Receptores Elétrons (ex: Nitratos)	-20,00%	-14,9%	-15,3%	ND	<mark>-14,0%</mark>
ruminal	Taninos + Mimosina	Sem efeito	-29,6%	-27,4%	Sem efeito	ND
	Taninos + Saponinas	Sem efeito	-7,7%	-7,4%	ND	<mark>-12,1%</mark>

Congio et al.; Enteric CH4 mitigation strategies for ruminant in the LatAm & Caribbean: meta-analysis 2021

Emissão de fibra vs. demais

- Fibra: ~ 2 vezes mais CH4 do que outras frações (Jentsch et al., 2007);
- Correlação (Frações) X g CH4/kg MS:
 - FDN, FDA, celulose e hemicelulose x CH4 → r < 0,16;
 - CHO sol x CH4 \rightarrow r = -0,53;
 - Pectina x CH4 \rightarrow r = -0,49;
 - Relação CHO sol:NDF → r = -0,61

Foram altas e negativas (Sun et al, 2021)

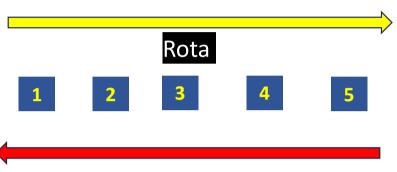

O pH ruminal muda as rotas fermentativas

• Equações ordenadas pela eficiência energética (inverso CH4/glucose);

		CH ₄ / glucose (mol/mol)	Glucose energy Capture (%)	Equation Number
Starch	0.66 acetate + 1.33 propionate	0	93	1
	Acetate + propionate + H ₂	0.25	86	2
Glucos	Butyrate + 2H ₂	0.5	78	3
Cellulose	$ \sqrt{0.66 \text{ acetate} + 0.66 \text{ butyrate} + 2.66 \text{H}_2} $	0.66	72	4
	2 acetate + 4H ₂	1.0	62	5

Volumoso aumenta a produção de metano

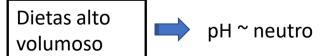
Rota	Produtos da Fermentação (Ácidos Graxos de Cadeira Curta)	Moles de CH4 por Mol de Glucose
1	Acetato (C2) + Propionato (C3)	Zero
2	Acetato (C2) + Propionato (C3)+ H2	0,25
3	Butirato (C4) + H2	0,50
4	Acetato (C2) + Butirato (C4) + H2	0,66
5	Acetato (C2) + H2	1,00


Dietas alto volumoso

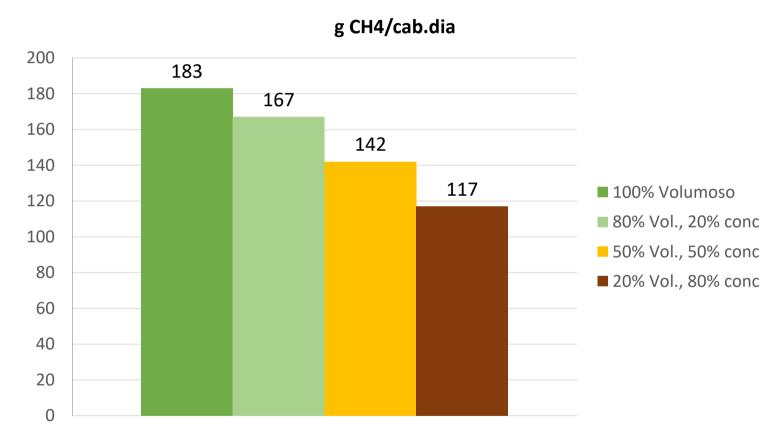
pH ~ neutro

↑ C2 e ↑ CH4

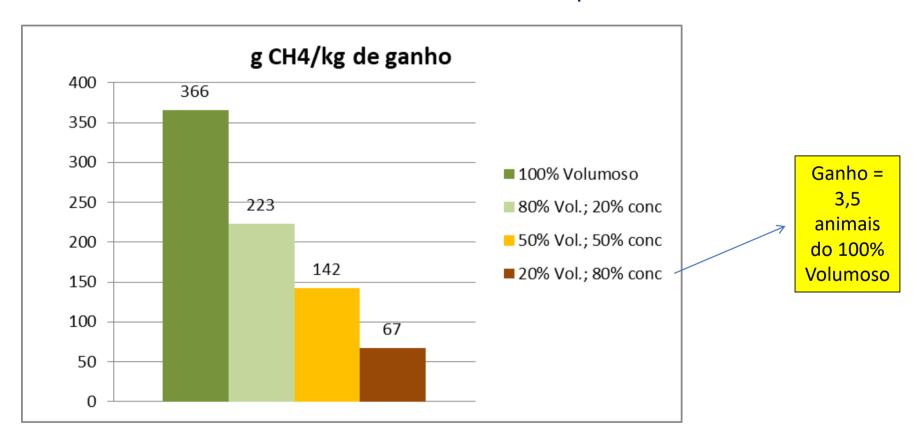
Concentrado reduz a produção de metano



Rota	Produtos da Fermentação (Ácidos Graxos de Cadeira Curta)	Moles de CH4 por Mol de Glucose
1	Acetato (C2) + Propionato (C3)	Zero
2	Acetato (C2) + Propionato (C3)+ H2	0,25
3	Butirato (C4) + H2	0,50
4	Acetato (C2) + Butirato (C4) + H2	0,66
5	Acetato (C2) + H2	1,00


↑ C3 e ↓ CH4

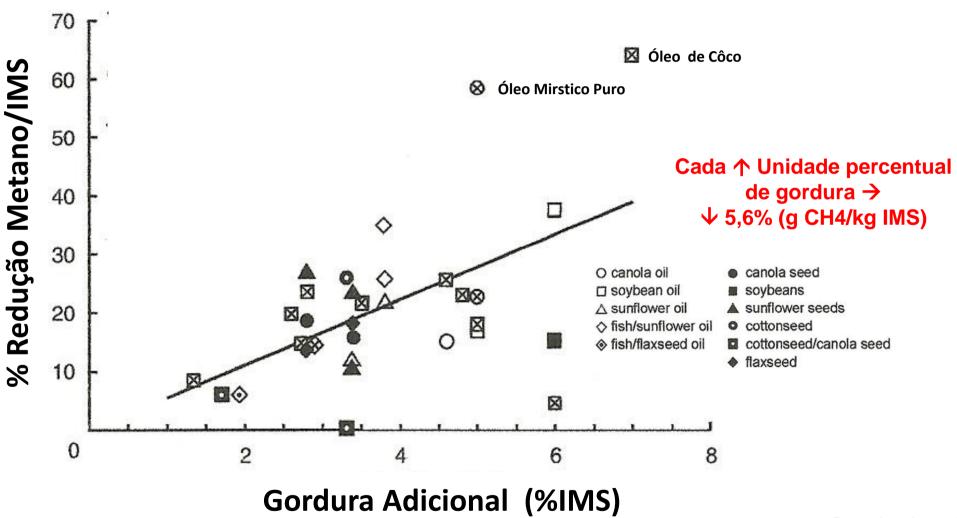
↑ C2 e ↑ CH4


Quanto mais concentrado, menor a emissão:

Redução estimada da emissão de metano entérico ao se aumentar a qualidade da dieta

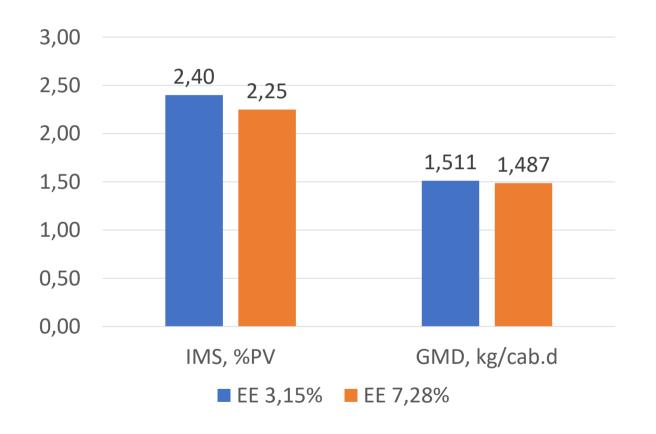
Quanto mais concentrado, menor a emissão:

Redução estimada da intensidade emissão de metano entérico ao se aumentar a qualidade da dieta


Estimada com base na equação de Medeiros et al., 2012

Lipídeos

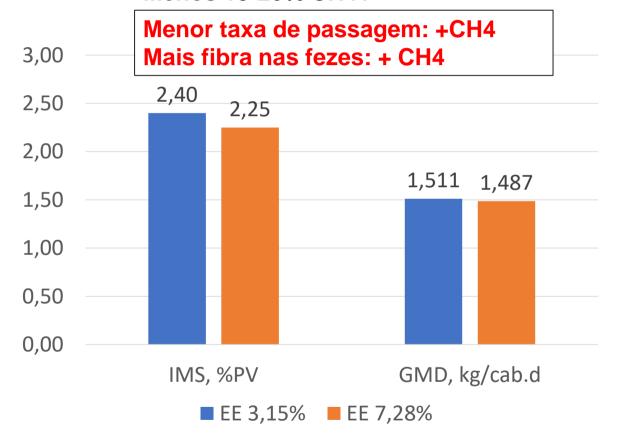
Redução na produção CH4 por lipídeos


- ✓ Efeito <u>tóxico</u> → Particularmente às Bactérias celulolíticas e metanogênicas e aos Protozoários;
- ✓ Pode <u>reduzir degradação</u> da <u>fibra</u> dietética → Pode reduzir consumo (mais CH4 na degradação dejetos...);
- ✓ Ajuda no "tamponamento" do pH
 - Não fermenta e substitui CHO na dieta
- ✓ Altera para balanço fermentativo mais eficiente (C3)
 - Sobrepõe-se ao efeito do Ionóforos

Redução na produção CH4 por lipídeos

Beauchemin et al., 2011

Limite para uso de gordura


- 40 animais,
- Peso Abate = 462 kg,
 - 208 dias de confinamento

3,5% versus 7,5% EE na MS

- 16,4% grão de soja na MS

Limite para uso de gordura

Menos 15-20% CH4?

- 40 animais,
- Peso Abate = 462 kg,
 - 208 dias de confinamento

3,5% versus 7,5% EE na MS

- 16,4% grão de soja na MS
 - IMS 6,3% (p<0,05);
 - GDP semelhante!
 - Eficiência → p = 0,09
 180 vs 194 g ganho/kg MS

Aditivos

Efeito dos aditivos convencionais

- Aumenta ganho → reduz pegada de C (g GEE/ kg de ganho);
- lonóforos → reduzem produção de Metano → Até 30% / efeito transitório;
- Virginiamicina → Melhora eficiência animal → Menor IMS e maior GDP = menor Intensidade de emissão;
- Nitrato (NO3-): ↓↓ Intensidade de emissão em 20-30%;
- Tanino: → ↓↓ Intensidade de emissão em 20-30%;
- Alga Vermelha (Asparagopsis): até 90% emissão CH4; Sem maior GDP;
- 3-NOP (3-nitrooxipropanol): -30 a 90% emissão CH4; Sem maior GDP;

Trabalhos interessante com "Imprinting": bezerro exposto 3-NOP → retira → efeito permanece por longo tempo

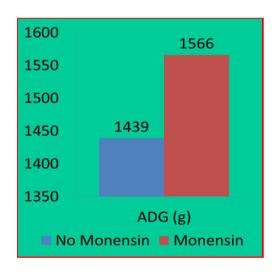
Monensina e Metano

Até ↓ 30% emissões CH₄ entérico (Guan et al.;2006; Odongo et al., 2007);

Efeito reduz com o tempo → Desde poucas semanas, há alguns meses;

Dietas à base de forragem → + difícil ocorrer adptação (Rumpler et al., 1986; O'Kelly & Spiers, 1992)

Meta-análise de Cook et al. (2024)


Major efetividade em reduzir metano:

- (1) Durante os primeiros 79 dias,
- (2) Inclusão entre 32 a 44 mg/kg de MS da dieta,
- (3) Dietas ricas em forragem e
- (4) Dietas oferecidas ad libitum.

Ionóforos & Gordura

- Gram positivas → + sensíveis à gordura (particularmente à insaturada);
- Redução do efeito do ionóforo, até 100% (Tedeschi et al., 2003);
- Não confirmado em experimento Caroço de Algodão no Brasil

Efeito do nível de gordura da dieta (3,5% X 7,0%) na eficácia da monensina em animais em terminação confinada (Gomes et al, 2013):

Caroço de algodão com menos gordura insaturada?

Utilização Virginiamicina: Pastagem

Aumento de GDP ~ + 13 % (Águas)

	Controle	VM	Diferença		
	g/ca	b.dia	gramas	%	
Exp. 1	580	675*	+95	16,4%	
Exp. 2	487	518	+31	6,4%	
Exp. 3	630	693 [‡]	+63	10,0%	

Exp.1 – 30/1 a 18/5/2009

Exp.2 - 23/5 a 7/10/2009

Exp. 3 - 6/1 a 19/5/2010

Goulart et al., 2010

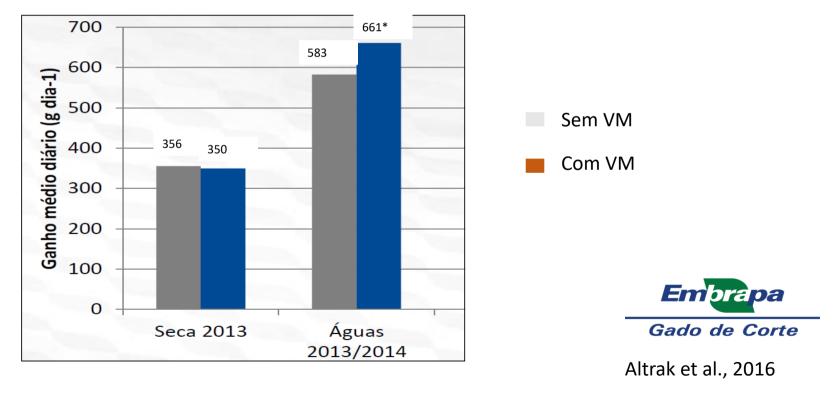
Utilização Virginiamicina: Pastagem

• Aumento de GDP ~ + 26 %

		Diferença			
	g/cab.dia	gramas	%		
SM	302a				
SM + VM	377ab	+75	+25%		
Prot	336b				
Prot + VM	427a	+89	+27%		

Ciclo 1 – 15/9 a 15/10/2009

Ciclo 2 – 15/5 a 19/11/2009


Ciclo 3 – 19/11 a 23/12/2012

Brunning et al., 2013

Utilização Virginiamicina: Pastagem

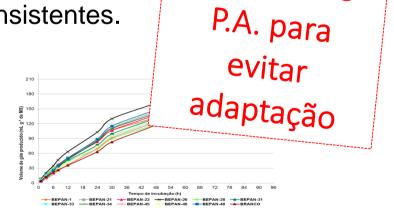
 Aumento de GDP: 78 g/cab.dia (~14%), Nas águas / Sem efeito na seca!

Utilização de aditivos em pastagem

- Resultados são bons
 - ✓ Aumento de GDP ~ 80-100 g/cab.dia;
 - ✓ Cerca de 15%;
 - ✓ Reduz Intensidade de emissão 13%, mesmo sem redução de CH4.

DESAFIO: Consumo adequado e constante

Aditivos Alternativos


- Busca por metabólitos secundário de plantas → ação de aditivos (taninos, saponinas, óleos essenciais...)
- ↓↓ 20-25% emissões CH4 entérico → ovinos → folhas de árvores taníferas tropicais. (Malik et al., 2017)
- Saponina extraída de Camellia sinensis diminuiu a produção de metano em ovinos

Alicina (do alho) → ↓ emissões CH4 entérico → 5,6%

Resultados → promissores, porém, menos consistentes.

Rotação de

3-NOP

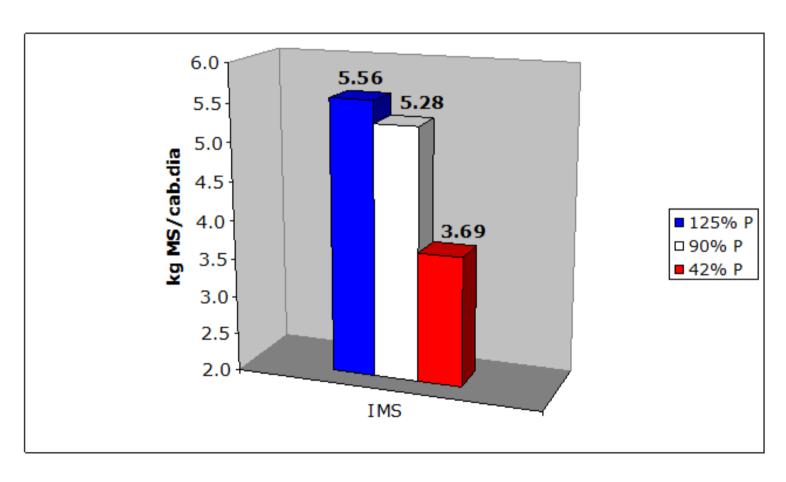
Article

Effect of 3-Nitrooxypropanol Combined with Different Feed Additives on Growth Performance, Carcass Traits, Enteric Methane Emissions, and Physiological Responses in Feedlot Beef Cattle Fed a High-Concentrate Finishing Diet

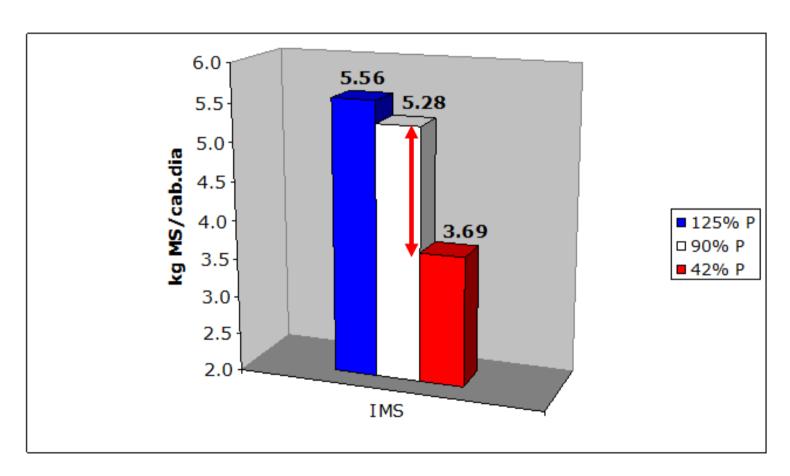
William Luiz de Souza ^{1,2,*}, Maria Betânia Niehues ³, Abmael da Silva Cardoso ⁴, Victor Valério de Carvalho ⁵, Alexandre Perdigão ⁵, Tiago Sabella Acedo ⁵, Diogo Fleury Azevedo Costa ², Luis Fernando Monteiro Tamassia ⁶, Maik Kindermann ⁶ and Ricardo Andrade Reis ¹

- (1) Controle (CTL): monensina (26 mg/kg MS);
- (2) M3NOP: CTL + 3-NOP (100 mg/kg MS); and
- (3) Combo: 3-NOP (100 mg/kg DM) + óleos essentiais (100 mg/kg MS) + Vit. D3 (0.10 mg/kg DM) + Cr + Zn

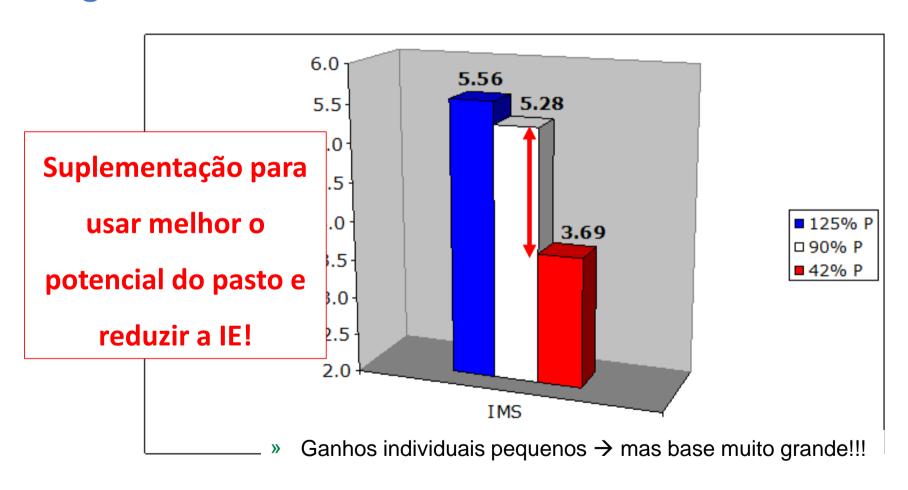
Resultados M3NOP e Combo em relação ao CTL:


CH4 (g/d) = - 38.8%; CH4 (g/kg MS) = -41.1; CH4 Intensidade Emissão (g/kg carcaça) = - 40.8%, Emissão de H2 (g/d) = + 291%

O aumento de H2 na atmosfera pode ser muito negativo, mas Hristov et al, 2025 concluíram:


"... o benefício...da menor <mark>emissão de CH4</mark> ... é <mark>reduzido em menos de 1%</mark>, pelos <mark>aumentos</mark> esperados nas emissões de H2 ..." (Hristov et al, 2025, Enteric methane mitigation and its impact, JDS)

Pastagens


Efeito da suplementação de diferentes atendimentos à exigência de P no consumo da dieta

Efeito da suplementação de diferentes atendimentos à exigência de P no consumo da dieta

Efeito da suplementação de diferentes atendimentos à exigência de P no consumo da dieta

Digestibilidade e intensidade de emissão

Variáveis			EPM	р
	Ipyporã	Marandu		
TAF (kg/ ha.dia)	40,1	46,8	2,3	0,0058
Massa de forragem (kg/ha)	3.205	3.795	90	0,0025
Altura do dossel (cm)	27,0	31,0	0,7	0,0350
Folha (%)	46,3	38,8	1,1	0,0001
Colmo (%)	20,0	22,2	0,6	0,0135
Relação folha:colmo	2,7	1,9	0,1	0,0001
PB (%)	11,2	9,3	0,3	0,0454
DIVMO (%)	65,2	58,5	0,7	0,0014
FDN (%)	69,7	72,6	0,4	0,0039

BRS Ipyporã ("belo começo" em guarani): híbrido de *Brachiaria* da Embrapa

Cacilda Borges de Valle¹
Valeira Batista Pacheco Euclides¹
Valeira Batista Pacheco Euclides¹
Jose Raul Valério¹
Andrea Beatriz Mendes-Bonato²
Jaqueline Rosemeire Verzignassi¹
Eabricia Zimmerman Vilela Torres²
Manuel Cláudio Motta Macedo¹
Celso Dornelas Fernandes¹
Sanzio Carvalho Lima Barinos¹
Moacy Bernardino Dias Filho³
Luis Armando Zago Machado⁴
Ademir Hugo Zimmer¹

			kg CH4/kg
Cultivares	CH4, kg/d	GDP	Ganho
Marandu	0,192	0,680	0,283
Ipyporâ	0,197	1,000	0,197

Intensidade de emissão = -30%

Mix Gram-Leg

Article

Pigeon Pea Intercropped with Tropical Pasture as a Mitigation Strategy for Enteric Methane Emissions of Nellore Steers

Althieres José Furtado ^{1,2,*}, Adibe Luiz Abdalla Filho ^{1,2,*}, Jaqueline Fernandes Bruno ^{1,2}, Rolando Pasquini Neto ^{1,2}, Annelise Aila Gomes Lobo ^{1,2}, Gabriele Voltareli da Silva ^{1,2}, Flavio Perna Junior ¹, Teresa Cristina Alves ², Alexandre Berndt ², André de Faria Pedroso ², Sérgio Raposo de Medeiros ², Patrícia Perondi Anchão Oliveira ² and Paulo Henrique Mazza Rodrigues ¹

Emissões

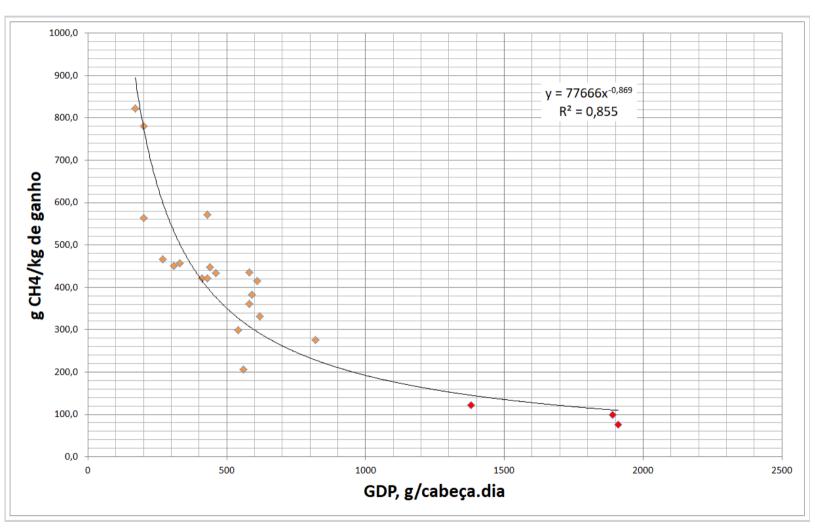
- Tratamentos: (1) Pasto Degradado, (2) Pasto Recuperado e Mix Braquiária-Guandu
- Seca: CH4 g/d: Degradado 70% maior que Mix;
- 2) Intensidade de Emissão Águas:~ 300 g CH4/kg ganho, para todos;
- 3) Intensidade de Emissão Seca: Degradado: 3700 g CH4/kg de ganho Mix: 873 g CH4/kg de ganho Degradado + 4X

Furtado et al., 2023

Intensidade de Emissão & Ganho de Peso

Emissão CH4 – Ordenado por g CH4/dia

4	


		Peso Vivo	GMD	Emissão anual	Tratamentos			Fonte
	Tipo	kg	g/cab.dia	kg CH4/ano		g CH4/dia	g CH4/kg ganho	
1	Pasto	200	200	41	Mombança	112,6	563,0	Souza et al, 2011
2	Pasto	200	560	42	Mombança + Suplemento	115,3	206,0	Souza et al, 2012
3	V100	467	270	46	100% silagem de sorgo: 0% conc.	126,0	466,8	Berchiellii et al (2003), Pedreira e et al., 2004)
4	V40:C60	456	310	51	40% silagem de sorgo: 60% conc.	139,7	450,7	Berchiellii et al (2003), Pedreira e et al., 2004)
5	V100	800	170	51	Feno (80% coast-cross:20% leuceuna)	139,7	821,9	Possenti et al, 2008)
6	V13:C87	560	1910	54	13% BIN: 87% conc	147,0	76,0	Nunes et al (2024), no prelo
7	V70:C30	459	330	55	70% silagem de sorgo: 30% conc.	150,7	456,6	Berchiellii et al (2003), Pedreira e et al., 2004)
8	V101	800	200	57	Feno (80% coast-cross:20% leuceuna)+LEV	156,2	780,8	Possenti et al, 2008)
9	Pasto	411	540	59	Braquiarão (verão)	161,6	299,3	Demarchi et al (2003a, 2003b)
10	V38:C62	381	1380	61	Confinamento 38% Sil Milho: 62% conc	167,0	121,9	Meo Filho et al, 2020
11	Pasto	438	410	63	Braquiarão (outono)	172,6	421,0	Demarchi et al (2003a, 2003b)
12	S. Integrado	342	430	66	ILPF	180,9	420,7	Meo Filho et al, 2020
13	V25:C75	573	1890	69	25,5% Sil. Milho: 74,5% conc	188,0	99,0	Nunes et al (2024), no prelo
14	S. Integrado	341	440	72	ILF	196,7	447,0	Meo Filho et al, 2020
15	Pasto	341	460	73	Pasto Extensivo	199,7	434,1	Meo Filho et al, 2020
16	V90:C10	421	431	73	90% silagem de sorgo: 10% suplemento	199,9	571,2	Medeiros et al (não publicado)
17	Pasto	331	620	74	100% pastagem	203,5	331,2	Meo Filho et al, 2020
18	S. Integrado	361	580	77	ILP	209,8	361,7	Meo Filho et al, 2020
19	Pasto	338	820	83	Braquiarão + Supl. Diário	226,0	275,6	Canesin et al. (2007,2009)
20	Pasto	376	590	83	Pasto intensivo	226,1	383,2	Meo Filho et al, 2020
21	Pasto	338	580	92	Braquiarão + Dias sim/não	252,6	435,5	Canesin et al. (2007,2009)
22	Pasto	338	610	93	Braquiarão + Dias úteis	253,4	415,5	Canesin et al. (2007,2009)

Emissão CH4 – Ordenado por g CH4/kg de ganho

4	ď	
-	٦	

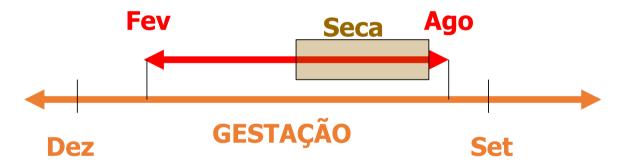
		Peso Vivo	GMD	Emissão anual	Tratamentos			Fonte
	Tipo	kg	g/cab.dia	kg CH4/ano		g CH4/dia	g CH4/kg ganho	
5	V100	800	170	51	Feno (80% coast-cross:20% leuceuna)	139,7	821,9	Possenti et al, 2008)
1	Pasto	200	200	41	Mombança	112,6	563,0	Souza et al, 2011
8	V101	800	200	57	Feno (80% coast-cross:20% leuceuna)+LEV	156,2	780,8	Possenti et al, 2008)
3	V100	467	270	46	100% silagem de sorgo: 0% conc.	126,0	466,8	Berchiellii et al (2003), Pedreira e et al., 2004)
4	V40:C60	456	310	51	40% silagem de sorgo: 60% conc.	139,7	450,7	Berchiellii et al (2003), Pedreira e et al., 2004)
7	V70:C30	459	330	55	70% silagem de sorgo: 30% conc.	150,7	456,6	Berchiellii et al (2003), Pedreira e et al., 2004)
11	Pasto	438	410	63	Braquiarão (outono)	172,6	421,0	Demarchi et al (2003a, 2003b)
12	S. Integrado	342	430	66	ILPF	180,9	420,7	Meo Filho et al, 2020
16	V90:C10	421	431	73	90% silagem de sorgo: 10% suplemento	199,9	571,2	Medeiros et al (não publicado)
14	S. Integrado	341	440	72	ILF	196,7	447,0	Meo Filho et al, 2020
15	Pasto	341	460	73	Pasto Extensivo	199,7	434,1	Meo Filho et al, 2020
9	Pasto	411	540	59	Braquiarão (verão)	161,6	299,3	Demarchi et al (2003a, 2003b)
2	Pasto	200	560	42	Mombança + Suplemento	115,3	206,0	Souza et al, 2012
18	S. Integrado	361	580	77	ILP	209,8	361,7	Meo Filho et al, 2020
21	Pasto	338	580	92	Braquiarão + Dias sim/não	252,6	435,5	Canesin et al. (2007,2009)
20	Pasto	376	590	83	Pasto intensivo	226,1	383,2	Meo Filho et al, 2020
22	Pasto	338	610	93	Braquiarão + Dias úteis	253,4	415,5	Canesin et al. (2007,2009)
17	Pasto	331	620	74	100% pastagem	203,5	331,2	Meo Filho et al, 2020
19	Pasto	338	820	83	Braquiarão + Supl. Diário	226,0	275,6	Canesin et al. (2007,2009)
10	V38:C62	381	1380	61	Confinamento 38% Sil Milho: 62% conc	167	121,9	Meo Filho et al, 2020
13	V25:C75	573	1890	69	25,5% Sil. Milho: 74,5% conc	188	99,0	Nunes et al (2024), no prelo
6	V13:C87	560	1910	54	13% BIN: 87% conc	147	76,0	Nunes et al (2024), no prelo

g CH4/cab.dia Vs g CH4/kg de ganho

Redução na quantidade de animais

Menos vacas vazias:

Se aumentar a taxa de prenhez de 65% para 80% → Menos 15 milhões de vacas para produzir a mesma quantidade de bezerros!


Natalidade e a necessidade matrizes

Taxa de Natalidade	Bezerros (milhões)	Matrizes (milhões)	Vacas a menos (milhões)
65%	52	80	Zero
75%	52	69	11
80%	52	65	15
85%	52	61	19
90%	52	58	22
95%	52	55	25

Evitar Programação Fetal: Bezerro mais pesado

- Desenvolvimento das células musculares e adiposas → 2º e 8º mês de gestação

IMPORTANTE EVITAR RESTRIÇÕES NESTE PERÍODO

Ao adiantar entrada de novilhas de reposição \rightarrow outra oportunidade de reduzir rebanho

Futuro próximo

Genômica

Wallace et al. BMC Genomics (2015) 16:839 DOI 10.1186/s12864-015-2032-0

RESEARCH ARTICLE

Open Access

The rumen microbial metagenome associated with high methane production in cattle

R. John Wallace^{1*}, John A. Rooke², Nest McKain¹, Carol-Anne Duthie², Jimmy J. Hyslop², David W. Ross², Anthony Waterhouse², Mick Watson^{3†} and Rainer Roehe^{2†}

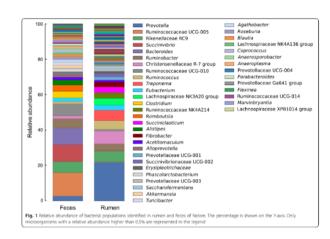
- A abundância de genes de arqueas no rúmen correlacionou-se fortemente com as diferentes emissões de metano de cada animal...
- Um grande número de sequências proteicas previstas diferiu entre bovinos com alta e baixa emissão de metano. 95% desconhecidas, indicando uma área fértil para exploração futura.

Genômica

A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions

Wallace et al 2019

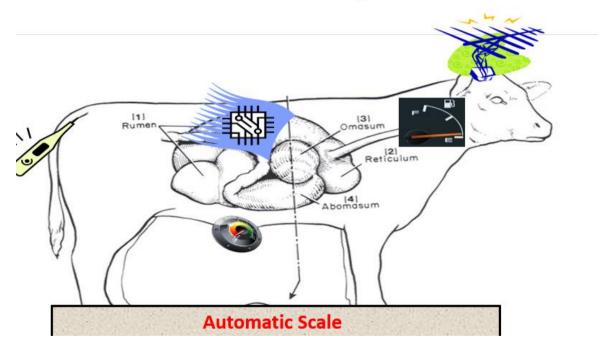
A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions


- "...essa comunitdade microbiana (core) representa ruminantes em geral, especialmente ... bacterias e protozoários ...
- O microbioma core consiste em menos de 0.25% do pool de microrganismos..., ainda que varie abundantemente, representando 30 a 60% do microbioma em geral.
- ...microrganismos herdáveis e interativos geram possibilidades de melhoramento animal para microbiomas particular e, portanto, com propriedades ...produção ...

"Ômicas" & Holobiômica + Al

Possibilidades sem precedentes de manipulação!

Dra. Luciana Regitano (Embrapa Pecuária Sudeste) coletando amostras de animais - Program de Touros Jovens (ABCZ)



Pecuária de precisão + Al

- Monitoramento Intenso;
- Decisão em tempo real;
- Capacitação produtor rural;
- Facilita transferência de tecnologia;
- Provê info para Big-data.

Ro-Boi-cop!

App de uma spin-off da Embrapa/ESALQ:

- Optimal Trading Point (OTP);
- Reducing C footprint by optimizing fattening;

Considerações Finais (para ajudar a esfriar o planeta)

- A IE é a melhor métrica, por considerar GEE e a produção de alimentos simultaneamente;
- Precisamos eliminar (ou reduzir) no rebanho os animais que produzem GEE, sem produzir produto (IE ∞);
- O maior desafio é escalar as soluções nutricionais de redução direta (pastagem melhorada é exceção);
- A maior contribuição da nutrição será por aumento de produtividade (dietas, suplementos, uso de aditivos, manejo de pastagem, etc.);
- Ao contrário do Hemisfério N, temos chance de aumentar a produtividade, reduzir o rebanho e reduzir GEE

Obrigado sergio.medeiros@embrapa.br